λ-CONTINUOUS MARKOV CHAINS. II(1)

BY SHU-TEH C. MOY

Summary. Continuing the investigation in [8] we study a λ -continuous Markov operator P. It is shown that, if P is conservative and ergodic, P is indeed "periodic" as is the case when the state space is discrete; there is a positive integer δ , called the period of P, such that the state space may be decomposed into δ cyclically moving sets $C_0, \dots, C_{\delta-1}$ and, for every positive integer n, $P^{n\delta}$ acting on each C_i alone is ergodic. It is also shown that P maps $L_q(\mu)$ into $L_q(\mu)$ where μ is the nontrivial invariant measure of P and $1 \le q \le \infty$. If μ is finite and normalized then it is shown that (1) if $f \in L_{\infty}(\lambda)$, then $\{P^{n\delta+k}f\}$ converges a.e. (λ) to $g_k = \sum_{i=0}^{\delta-1} c_{i+k} 1_{C_i}$ where $c_j = \delta \int_{C_j} f d\mu$ if $0 \le j \le \delta - 1$ and $c_j = c_i$ if $j = m\delta + i$, $0 \le i \le \delta - 1$, (2) $\{P^{n\delta+k}f\}$ converges in $L_q(\mu)$ to g_k if $f \in L_q(\mu)$, and (3) $\liminf_{n\to\infty} P^{n\delta+k} f = g_k$ a.e. (λ) if $f \in L_1(\mu)$ and $f \ge 0$. If μ is infinite, then it is shown that (1) if $f \ge 0$, $f \in L_q(\mu)$ for some $1 \le q < \infty$, then $\liminf_{n\to\infty} P^n f = 0$ a.e. (λ) , (2) there exists a sequence $\{E_k\}$ of sets such that $X = \bigcup_{k=1}^{\infty} E_k$ and $\lim_{n\to\infty} P^{n\delta+i} 1_{E_k} = 0$ a.e. (λ) for $i = 0, 1, \dots, \delta-1$ and $k = 1, 2, \dots$

- I. **Introduction.** Let X be a nonempty set, \mathcal{X} , a σ -algebra of subsets of X and λ , a σ -finite measure on \mathcal{X} . Let p(x, y) be an $\mathcal{X} \times \mathcal{X}$ measurable function defined on $X \times X$ satisfying the following conditions:
 - 1. $p(x, y) \ge 0$ for $(\lambda \times \lambda)$ almost all (x, y),
 - 2. $\int p(x, y)\lambda(dy) \le 1$ for (λ) almost all x.

Let $L_{\infty}(\lambda)$ be the collection of all λ -essentially bounded functions and $\mathcal{A}(\lambda)$, the collection of all finite, real-valued, countably additive functions on \mathcal{X} which are absolutely continuous with respect to λ . Let $\mathcal{A}^+(\lambda)$ be the collection of all nonnegative elements of $\mathcal{A}(\lambda)$. For any $f \in L_{\infty}(\lambda)$, Pf is defined by

(1.1)
$$Pf(x) = \int p(x, y) f(y) \lambda(dy),$$

and for any $v \in \mathcal{A}(\lambda)$, vP is defined by

(1.2)
$$vP(A) = \int v(dx) \int_A p(x, y) \lambda(dy).$$

The operator P here is a special kind of λ -measurable Markov operator of E,

Presented to the Society, August 28, 1964; received by the editors November 26, 1964.

⁽¹⁾ This work was supported in part by the National Science Foundation, grant GP-1624.

Hopf [7]. We call it a λ -continuous Markov operator. (1.1), (1.2) remain meaningful for non-negative f not necessarily λ -essentially bounded and non-negative σ -finite measure ν . The iterates P^n of P are then given by

$$P^{n}f(x) = \int p^{(n)}(x, y) f(y) \lambda(dy)$$

and

$$\nu P^{n}(A) = \int \nu(dx) \int_{A} p^{(n)}(x, y) \lambda(dy)$$

where $p^{(n)}(x, y)$ are defined inductively by

(1.3)
$$p^{n}(x,y) = \int p^{(n-1)}(x,z)p(z,y)\lambda(dz).$$

The function $p(\cdot,\cdot)$ is called the *density function* of P with respect to λ and is only uniquely determined by P a.e. $(\lambda \times \lambda)$. All subsets of X discussed in this paper are elements of $\mathcal X$ and all functions on X are $\mathcal X$ -measurable functions. Unless otherwise indicated, for two sets A, B, $A \subset B$, A = B means that $\lambda(A - B) = 0$, $\lambda(A \triangle B) = 0$ respectively, and for two functions f, g on f, f is f means that the equality and the inequality, respectively, are satisfied except on a f-null set. For any set f is to represent the function which equals f on f and f on the complement f of f is the f-measurable Markov operator defined by

$$I_A f(x) = 1_A(x) f(x),$$

$$v I_A(B) = v(A \cap B).$$

For any set E, define P_E by

(1.4)
$$P_E = \sum_{n=0}^{\infty} P(I_E, P)^n$$

where E' is the complement of E. P_E operating on either non-negative functions or measures has well-defined meanings (cf. [8, §VI]). For a measure v, and a function f we shall use the symbol $\langle v, f \rangle$ to denote the integral $\int f \, dv$. For any $v \in \mathscr{A}^+(\lambda)$, the *support* of v is the set A such that v(X - A) = 0, and $B \subset A$ with B being λ non-null implies that v(B) > 0, "non-null" and "null" shall mean λ -non-null and λ -null respectively.

Following E. Hopf and J. Feldman we call a set A a conservative set if for every non-null subset B of A, $P_B1_B=1$ on B. The largest conservative set C is called the conservative part of X. D=X-C is called the dissipative part of X. P is conservative if X=C, dissipative if X=D. We say that a set A is closed if $P1_A=1$ on A. The collection of all closed subsets of C is a σ -algebra of subsets of C which we shall denote by C. An element C of C is indecomposable if C is non-null and if the only closed subsets of C are null sets and C itself. A conservative operator C is ergodic if C is indecomposable or, equivalently, if the only elements of C are C and the null set. In [8] it has been shown that, for a conservative C-continuous

Markov operator P, the space X may be decomposed into at most countably many indecomposably closed sets C_1, C_2, \cdots , and that to each C_i there is a nontrivial σ -finite P-invariant measure μ_i which is equivalent to λI_{C_i} , and every P-invariant measure is of the form $\sum \alpha_i \mu_i$. Thus, if we consider P acting on each C_i only, P is ergodic. In [8] we studied the convergence properties of the sequence $\{\sum_{n=1}^N p^n(z,x)/\sum_{n=1}^N p^n(z,y)\}$. It was proved that, for an ergodic conservative P, the sequence converges to the limit f(x)/f(y) where f is the derivative of an invariant measure with respect to λ . In this paper we shall proceed further to study the asymptotic behavior of sequences $\{p^{(n)}(x,y)\}$ and $\{P^nf\}$. As we know that $\sum_{n=0}^\infty p^n(x,y)$ converges on $X \times D$, therefore, $\lim_{n\to\infty} p^n(x,y) = 0$ on $X \times D$. The limiting behavior of $\{p^n(x,y)\}$ is relatively simple on the dissipative part. Thus we shall concentrate on conservative Markov operators.

It is well known that, if X is discrete and if P is conservative and ergodic, then X may be partitioned into a finite number δ of cyclically moving sets where δ is the period of P, and $\{p^{n\delta}(x,y)\}$ converges as $n\to\infty$ [1]. Thus in §II, a theory of periods is developed for a λ-measurable, conservative and ergodic Markov operator. Much of the work here is inspired by the pioneer work of W. Doeblin. The theory of periods of a conservative ergodic λ-measurable Markov operator given here is modeled after Doeblin's (which was perfected and completed by Chung [2]). Owing to the good manner in which the collection of all closed subsets conducts itself, the theory takes a much simpler form here than Doeblin's original. In §III, asymptotic properties of $\{p^n(x,y)\}$ and $\{P^nf\}$ are studied. The device $\rho(x)$ used here is similar to Doeblin's. Two very different cases arise as expected; namely, the case that the nontrivial invariant measure μ of P is finite and the case that μ is infinite. Theorems concerning the a.e. (λ) convergence of $\{P^n f\}$ when $f \in L_{\infty}(\lambda)$ may be considered as generalizations of convergence theorems of $\{P_{ij}^{(n)}\}$ of discrete state spaces. Theorems concerning the $L_a(\mu)$ convergence of $\{P^n f\}$ when $f \in L_a(\mu)$ are new even for discrete state spaces. There remains the open question whether there is also a.e.(λ) convergence for $\{P^n f\}$ when $f \in L_a(\mu)$ and P is aperiodic. I am only able to show that, if f is non-negative $\liminf_{n\to\infty} P^n f$ is equal to the $L_a(\mu)$ limit a.e. (λ) for the case of a finite μ , and $\liminf_{n\to\infty} P^n f = 0$ a.e. (λ) for the case of an infinite μ . Some results for the case that μ is finite are similar to those of S. Orey [9] which is based on a hypothesis of T. E. Harris. I am indebted to K. L. Chung who introduced me to Doeblin's work.

II. Periods of λ -measurable conservative ergodic Markov operators. We recall that the properties of a set in \mathscr{X} being transient, conservative, closed, etc., were defined with reference to a λ -measurable Markov operator P. If there are more than one Markov operator these terminologies will be prefixed by "P-" or "Q-" to distinguish that the properties are referred to operator P or Q respectively. In this section attention will be paid mainly to iterations P^k of P.

LEMMA 2.1. Let k be a positive integer. Then, a set R is P-conservative if and

only if R is P^k -conservative; it follows that, if P is conservative, so is P^k and vice versa.

Proof. A non-null set R is P-conservative if and only if, for every non-null set $S \subset R$, $\sum_{n=0}^{\infty} P^n 1_S$ is unbounded [5]. Since $\sum_{n=0}^{\infty} P^{nk} 1_S \leq \sum \prod_{n=0}^{\infty} P^n 1_S$, R is P-conservative if R is P^k -conservative. Conversely, if a non-null set R is not P^k -conservative, then there is a non-null subset S of R for which $\sum_{n=0}^{\infty} P^{nk} 1_S$ is bounded. It follows that $\sum_{n=0}^{\infty} P^{nk+r} 1_S = P^r \sum_{n=0}^{\infty} P^{nk} 1_S$ is bounded so that $\sum_{n=0}^{\infty} p^n 1_S = \sum_{r=0}^{k-1} p^r \sum_{n=0}^{\infty} P^{nk} 1_S$ is also bounded. Hence R is also not P-conservative.

All through §II we shall assume that P is conservative and ergodic. A P^k -closed set E is said to be P^k -decomposable if and only if there is a non-null P^k -closed subset B of E such that E - B is also non-null. Since P^k is conservative, the collection of all P^k -closed sets is a σ -algebra; C - B is then also P^k -closed. A P^k -closed set is P^k -indecomposable if it is not P^k -decomposable. Since P is assumed to be ergodic, X is P-indecomposable. In this section we shall study the decomposability of X under iterates of P. For an arbitrary set E we denote the set P^k -1 by P^k -1 by P^k -1 by P^k -1 closed.

(2.1)
$$A^{k}(E) = \lceil P^{k} 1_{F} = 1 \rceil.$$

Then E is P^k -closed if and only if $E \subset A^k(E)$. It is easy to see that

- 1. $A^k(E_1) \subset A^k(E_2)$ if $E_1 \subset E_2$,
- 2. $A^k(E_1) \cap A^k(E_2)$ is null if $E_1 \cap E_2$ is null,
- 3. if $\{E_n\}$ is a finite or infinite sequence of sets, then

$$\bigcup_n A^k(E_n) \subset A^k \left(\bigcup_n E_n \right).$$

Denote $A^1(E)$ by A(E), then we have

$$A^{2}(E) = A(A(E)), A^{3}(E) = A(A^{2}(E)), \cdots$$

LEMMA 2.2. If E is P^k -closed, then A(E) is also and A(E) is P^k -decomposable or P^k -indecomposable according as E is P^k -decomposable or P^k -indecomposable. It follows that the lemma remains valid if we replace A(E) by $A^j(E)$ where j is an arbitrary positive integer.

Proof. If E is P^k -closed then $E \subset A^k(E)$. Hence $A(E) \subset A(A^k(E)) = (A^k(A(E)))$ and A(E) is P^k -closed. If E is P^k -decomposable, $E = B \cup C$ where B and C are non-null, disjoint and P^k -closed, then A(B) and A(C) are P^k -closed and disjoint. A(B) and A(C) are non-null because $A^k(B)$ and $A^k(C)$ are non-null. Hence A(E) is also P^k -indecomposable.

Now suppose that E is P^k -indecomposable, we shall show that A(E) is also P^k -indecomposable. Let F be a non-null P^k -closed subset of A(E), we shall first show $A^{k-1}(F) \cap E$ is non-null. We have

$$P^{k}1_{F} = PI_{E}P^{k-1}1_{F} + PI_{E'}P^{k-1}1_{F}.$$

Since $F \subset A(E)$, $P1_{E'} = 0$ on F, hence $PI_{E'}P^{k-1}1_F = 0$ on F. Hence we have

(2.2)
$$P^{k}1_{F} = PI_{E}P^{k-1}1_{F} = 1 \text{ on } F.$$

Since P1=1, it follows that if f>0 a.e. (λ) we also have Pf>0 a.e. (λ) . Now $1-I_EP^{k-1}1_F$ is a non-negative function. If the set $[I_EP^{k-1}1_F=1]$ is null then $P[1-I_EP^{k-1}1_F]=1-PI_EP^{k-1}1_F>0$ a.e. (λ) which contradicts (2.2). Hence $[I_EP^{k-1}1_F=1]$ is non-null, i.e., $E\cap A^{k-1}(F)$ is non-null. Now suppose A(E) were P^k -decomposable and F_1 , F_2 were two disjoint non-null P^k -closed subsets of A(E) then $E\cap A^{k-1}(F_1)$ and $E\cap A^{k-1}(F_2)$ would be two non-null, disjoint, P^k -closed subsets of E which is clearly impossible. Hence $E\cap A(E)$ is also E-indecomposable.

LEMMA 2.3. If P is conservative and ergodic, and if C_1, \dots, C_n are P^k -closed, non-null and pairwise disjoint then $n \leq k$.

Proof. Let $G_m = \bigcup_{i=0}^{k-1} A^i(C_m)$, then

$$A(G_m) \supset \bigcup_{i=0}^{k-1} A^{i+1}(C_m) \supset G_m,$$

hence each G_m is P-closed. $G_m = X$ for $m = 1, \dots, n$. Hence

$$(2.3) X = \bigcap_{m=1}^{n} G_m = \bigcup_{(i_1, \dots, i_n)} [A^{i_1}(C_1) \cap A^{i_2}(C_2) \cap \dots \cap A^{i_n}(C_n)].$$

Where the union appearing in the right-hand side of (2.3) is taken over all *n*-tuple (i_1, \dots, i_n) where i_j may be $1, 2, \dots, k$. There is at least one *n*-tuple (i_1, i_2, \dots, i_n) for which $A^{i_1}(C_1) \cap \dots \cap A^{i_n}(C_n)$ is non-null. Then i_1, i_2, \dots, i_n are all distinct, for $i_j = i_l$ would imply that $A^{i_j}(C_j) \cap A^{i_l}(C_l)$ is null. Hence $n \leq k$.

LEMMA 2.4. Let P be conservative and ergodic and k be a positive integer. Let $\mathscr{C}^{(k)}$ be the σ -algebra of P^k -closed subsets of X. Then $\mathscr{C}^{(k)}$ is generated by a finite number $\delta = \delta(k)$ of distinct atoms with δ dividing k. Each atom in $\mathscr{C}^{(k)}$ is also P^{δ} -indecomposably closed. It follows that $\mathscr{C}^{(k)}$ is identical with the σ -algebra $\mathscr{C}^{(\delta)}$ of all P^{δ} -closed sets.

Proof. By Lemma 2.3 $\mathscr{C}^{(k)}$ must be generated by a finite number of atoms. Let C_1 be an atom of $\mathscr{C}^{(k)}$. C_1 is a P^k -indecomposable closed set. Let $C_2 = A(C_1)$, $C_3 = A(C_2)$, \cdots . By Lemma 2.2 every C_i is also P^k - indecomposably closed. Hence, if $i \neq j$ we have either $C_i \cap C_j$ null or $C_i = C_j$. Since C_i is P^k -closed, $C_i \subset A^k(C_i) = C_{i+k}$. Hence $C_i = C_{i+k} = C_{i+2k} = \cdots$. It then follows that if d is a positive integer for which there is an i such that $C_i = C_{i+d}$, then $C_i = C_{i+d}$ for every positive integer i. Let δ be the smallest of all positive integers d for which

 $C_1=C_{1+d}$. Clearly $\delta \leq k$. δ must divide k for, if otherwise, then $k=n\delta+r$ where r is a positive integer < d, $C_{1+n\delta}=C_1=C_{1+n\delta+r}$, hence $C_1=C_{1+r}$ which contradicts the defining property of δ . Now for every i, $C_i=C_{i+\delta}=A^{\delta}(C_i)$, hence every C_i is P^{δ} -closed. Each C_i is also P^{δ} -indecomposable since it is P^k -indecomposable. $C_1, C_2, \cdots, C_{\delta}$ are all distinct. $\bigcup_{i=1}^{\delta} C_i$ is P-closed, therefore is equal to X. $\{C_1, C_2, \cdots, C_{\delta}\}$ consists of all atoms of $\mathscr{C}^{(k)}$ and also of $\mathscr{C}^{(\delta)}$. Hence $\mathscr{C}^{(k)}=\mathscr{C}^{(\delta)}$.

Lemma 2.5. For any positive integer k, let $\delta(k)$ be the positive integer of Lemma 2.4. Then, if k_1, k_2 are two positive integers such that k_1 divides k_2 , then $\delta(k_1)$ is equal to the greatest common divisor d of k_1 and $\delta(k_2)$.

Proof. By Lemma 2.4 $\delta(k_1)$ divides k_1 . We shall show that $\delta(k_1)$ also divides $\delta(k_2)$. Then it follows that $\delta(k_1)$ divides d. Let C_1 be an atom of $\mathscr{C}^{(k_1)}$. $C_2 = A(C_1), C_2 = A^2(C_1), \cdots$. Then $C_1, \cdots, C_{\delta(k_1)}$ are the totality of distinct atoms of $\mathscr{C}^{(k_1)}$. Let us consider P^{k_1} acting on C_1 only. It is ergodic, conservative and $P^{k_2} = (P^{k_1})^l$ where $l = k_2/k_1$. By Lemma 2.4 C_1 is decomposed into B_1, \dots, B_l , P^{k_2} -indecomposable sets with $B_2 = A^{k_1}(B_1)$, $B_3 = A^{k_1}(B_2)$, Then each C_i is decomposed into j P^{k_2} -closed sets $A^{i-1}(B_1), \dots, A^{i-1}(B_i)$. Hence $\mathscr{C}^{(k_2)}$ has a totality of $j \cdot \delta(k_1)$ distinct atoms, i.e., $\delta(k_2) = j \cdot \delta(k_1)$. To prove that d divides $\delta(k_1)$, let D_1 be a P^{k_2} -indecomposable set. Let $D_2 = A(D_1)$, $D_3 = A(D_2)$, ... then $D_1, \dots, D_{\delta(k_2)}$ are all distinct whereas $D_{n\delta(k_2)+i} = D_i$ for every couple of positive integers n,i. Let $q = \delta(k_2)/d$. Let $E_i = \bigcup_{n=0}^{q-1} D_{nd+i}$. Then $A^d(E_i) = E_i$ so that E_i is P^d -closed. Since d divides k_1 , E_i is also P^{k_1} -closed. E_1, \dots, E_d are all distinct, $A(E_i) = E_{i+1}$ and $X = \bigcup_{i=1}^d E_i$. If E_1 is P^{k_1} -indecomposable, so are all other E_i . If E_1 is P^{k_1} -decomposable so are all other E_i and they may be decomposed into a same number of P^{k_1} -indecomposable sets. Hence d divides $\delta(k_1)$. Since we have already proved the fact that $\delta(k_1)$ divides d, $d = \delta(k_1)$.

For a λ -measurable conservative ergodic Markov operator P we define the period δ of P by

(2.4)
$$\delta = \sup \left[\delta(k), \ k = 1, 2, \cdots \right].$$

The period δ of P may or may not be finite. If $\delta = 1$, P is said to be aperiodic. An aperiodic Markov operator is characterized by the property that all iterates of P are ergodic. If the period δ of a Markov operator P is finite then the restriction of P^{δ} to each P^{δ} -indecomposable set is aperiodic. It is well known that if the state space X is discrete then every conservative ergodic Markov operator has a finite period.

A sequence $\{C_n\}$ of sets in X shall be called a *consequent sequence* if C_1 is non-null and $C_n \subset A(C_{n+1})$ for $n=1,2,\cdots$. Then all sets in the sequence are non-null. If E is a P^k -indecomposable closed set and $d=\delta(k)$ then

$$\{E, A^{d-1}(E), A^{d-2}(E), \dots, E, A^{d-1}(E), A^{d-2}(E), \dots, E, \dots\}$$

is a consequent sequence. For a consequent sequence $\{C_n\}$ we have $C_n \subset \bigcup_{m=n+1}^{\infty} C_m$ for $n=1,2,\cdots$ since $\bigcup_{m=n+1}^{\infty} C_m$ is closed and, therefore, $\bigcup_{m=n+1}^{\infty} C_m = X$. Hence for each C_n , there is a C_m with m>n such that $C_n \cap C_m$ is non-null (and therefore $C_{n+k} \cap C_{m+k}$ is non-null for every positive integer k since $C_n \cap C_m \subset A^k(C_{n+k} \cap C_{m+k})$). To each $v \in \mathscr{A}^+(\lambda)$, $v \neq 0$, we may attach a consequent sequence $\{C_n(v)\}$ where $C_1(v) = \operatorname{supp} v$, $C_2(v) = \operatorname{supp} v$, $C_3(v) = \operatorname{supp} v$, $C_2(v) = \operatorname{supp} v$. If n = n is absolutely continuous to n = n then n = n that n = n that n = n such t

$$(2.5) H = \sup\{h(v): v \in \mathcal{A}^+(\lambda), v \neq 0\}.$$

H may be $+\infty$ or a finite positive integer.

Theorem 2.1. $H = \delta$.

Proof. Let k be an arbitrary positive integer and and E be a P^k -indecomposable closed set. Let $v = \lambda I_E$. The sequence $\{E, A^{\delta(k)-1}(E), \cdots, E, A^{\delta(k)-1}(E), \cdots\}$ is the consequent sequence of v and for this v, $h(v) = \delta(k)$. Hence $H \ge \delta(k)$ for every positive integer k. It follows that $H \ge \delta$. To prove $H \le \delta$, let v be an arbitrary nonzero element of $\mathscr{A}^+(\lambda)$ and let $C_n(v) = \sup_{i \in I} v P^{n-1}$ for $i = 1, 2, \cdots$ and i = h(v). Let $i = 1, \cdots, h$, be defined by

$$(2.6) E_i = \bigcup_{i=0}^{\infty} C_{i+jh}(v).$$

Since $C_{i+jh}(v) \subset A^h(C_{i+(j+1)h})$, E_i are P^h -closed. If $i_1 \neq i_2$, $E_{i_1} \cap E_{i_2}$ is null for if $E_{i_1} \cap E_{i_2}$ is non-null, then, there are non-negative integers j_1, j_2 such that $C_{i_1+j_1h}(v) \cap C_{i_2+j_2h}(v)$ is non-null. Then $i_1+j_1h-(i_2+j_2h)=(i_1-i_2)+(j_1-j_2)h$ is divisible by h. It follows that i_1-i_2 is divisible by h which is impossible since $|i_1-i_2| < h$. E_1, \dots, E_h constitute the totality of all P^h -indecomposable sets. Hence $h = \delta(h) \leq \delta$. Hence $H \leq \delta$.

For any nonzero measure $v \in \mathcal{A}^+(\lambda)$ we shall define h'(v) to be the *minimum* of all positive integers k for which there is a positive integer N such that $C_N(v) \cap C_{N+k}(v)$ is non-null. It is clear that h(v) divides h'(v). If η is absolutely continuous to vP^n for some $n \ge 0$ then $h'(\eta) \ge h'(v)$. Let

$$(2.7) H' = \sup\{h'(v): v \in \mathscr{A}^+(\lambda), v \neq 0\}.$$

We always have $H' \ge H$. For a general conservative ergodic λ -measurable Markov operator P it is possible to have H' > H as illustrated by the following example. Let X be the set of all complex numbers of absolute value 1 and λ be the linear Lebesgue measure. Let $\alpha = e^{i2\pi\theta}$ where θ is irrational and $Pf(x) = f(\alpha x)$. Then

 P^n is ergodic for every positive integer n, so that P is aperiodic and H=1 (cf. [6, p. 26]). Let v have, as its support, the set $[e^{i2\pi y}: 0 \le y \le \varepsilon]$ where ε is a positive number. Then vP^n has the set $[e^{i2\pi y}: n\theta \le y \le n\theta + \varepsilon]$ as its support. Let k be an arbitrary positive integer. Let $2\pi c$ be the minimum distance from the point 1 to $e^{i2\pi\theta}$, $e^{i4\pi\theta}$, \dots , $e^{i2k\pi\theta}$. Then c > 0. Hence if $\varepsilon < c$ we have h'(v) > k. Hence $H' = \infty$.

LEMMA 2.6. If H' is finite, then $H' = H = \delta$ and for every consequent sequence $\{E_n\}$ there is a positive integer N such that $E_n \cap E_{n+\delta}$ is non-null for every $n \ge N$.

Proof. If H' is finite, then H' is a positive integer and there is a nonzero measure $v_1 \in \mathcal{A}^+(\lambda)$ such that $h'(v_1) = H'$. Since $H' \ge H$, H is finite and there is a nonzero measure $v_2 \in \mathcal{A}^+(\lambda)$ such that $h(v_2) = H$. Since $C_1(v_2) \subset X = \bigcup_{n=1}^{\infty} C_n(v_1)$, there is an n such that $C_1(v_2) \cap C_n(v_1)$ is non-null. Let v be a nonzero measure which has $C_1(v_2) \cap C_n(v_1)$ as its support, then v is absolutely continuous to both v_2 and $v_1 P^{n-1}$. Hence $h(v) \ge h(v_1)$, $h'(v) \ge h'(v_2)$. However, since $h(v) \le H$, $h'(v) \le H'$, h(v) = H, h'(v) = H'. Now consider the consequent sequence $\{C_n(v)\}$ of v. Let k be a positive integer such that there is an n for which $C_n(v) \cap C_{n+k}(v)$ is non-null. Then $H' \leq k$. Now, since $C_n(v) \cap C_{n+k}(v)$ is non-null we may choose a nonzero measure $\eta \in \mathcal{A}^+(\lambda)$ with $C_n(v) \cap C_{n+k}(v)$ as its support. Then η is absolutely continuous to νP^{n-1} . Hence $h'(\eta) \ge h'(\nu)$. It follows that $h'(\eta) = H'$ and there is a positive integer m such that $C_m(\eta) \cap C_{m+H'}(\eta)$ is non-null. But we have $C_m(\eta) \subset C_{n-1+m}(\nu) \cap C_{n-1+m+k}(\nu), \quad C_{m+H'}(\eta) \subset C_{n-1+m+H'}(\nu) \cap C_{n-1+m+H'+k}(\nu).$ Hence $C_{n-1+m}(v) \cap C_{n-1+m+k}(v) \cap C_{n-1+m+k'}(v) \cap C_{n-1+m+k'+k}(v)$ is non-null. It follows that $C_{n-1+m+H'}(v) \cap C_{n-1+m+k}(v)$ is non-null. Hence either k-H'=0or $k-H' \ge H'$. If k-H'=0 then k is divisible by H'. If $k-H' \ge H'$, repeating the same argument for k - H' as for k before, we conclude that k - 2H' is either 0 or $\geq H'$. Repeating the same argument finitely many times we obtain the result k - jH' = 0. Hence k is divisible by H'. This is true for all positive integers k for which there is a positive integer n such that $C_n(v) \cap C_{n+k}(v)$ is non-null. Hence H' divides H. Hence $H' = H = \delta$. Now let $\{E_n\}$ be an arbitrary consequent sequence. Since $X = \bigcup_{n=1}^{\infty} E_n$, $C_1(v) \cap E_{n_0}$ is non-null for some positive integer n_0 . Let $\zeta \in \mathscr{A}^+(\lambda)$ have $C_1(v) \cap E_{n_0}$ as its support. Then $h'(\zeta) \ge h(v)$ so that $h'(\zeta) = h(v) = \delta$. There is a positive integer l such that $C_l(\zeta) \cap C_{l+\delta}(\zeta)$ is non-null. It follows that $C_n(\zeta) \cap C_{n+\delta}(\zeta)$ is non-null for all $n \ge l$. Now we have, for every positive integer n, $C_n(\zeta) \subset E_{n_0-1+n}$. Hence $C_n(\zeta) \cap C_{n+\delta}(\zeta)$ being non-null implies that $E_{n_0-1+n} \cap E_{n_0-1+n+\delta}$ is non-null. Let $N=n_0-1+l$. Then $E_n \cap E_{n+\delta}$ is nonnull for all positive integers $n \ge N$.

Now we shall proceed to show that the period of a conservative, ergodic, λ -continuous Markov operator is always finite. To do this we shall choose a definite version of p(x, y) for P to satisfy

- 1. $p(x, y) \ge 0$ for all $(x, y) \in X \times X$ and
- 2. $\int p(x, y)\lambda(dy) = 1$ for all $x \in X$.

Then the iterates $p^{(n)}(x,y)$ given by (1.3) also satisfy 1 and 2 For each $x \in X$, $E \in \mathcal{X}$ let

$$v_x(E) = \int_E p(x, y) \lambda(dy).$$

For each $x \in X$, v_x is a probability measure absolutely continuous to λ and for each fixed $E \in X$, x varying over X, $v_x(E)$ is a version of $P1_F$.

LEMMA 2.7. For a λ -continuous, conservative, ergodic Markov operator P, H' (defined by (2.7)) is finite.

Proof. If H' were infinite, then there would be a sequence $\{\eta_k\}$ of nonzero measures in $\mathscr{A}^+(\lambda)$ such that $\lim_{k\to\infty}h'(\eta_k)=+\infty$. Let $\{C_n(\eta_k)\}$ be the consequent sequence of η_k . Sets $C_n(\eta_k)$ are only unique up to sets of λ measure zero. Now we shall make a definite choice of sets $C_n(\eta_k)$ to satisfy the condition that if $x\in C_n(\eta_k)$ then $v_x(C_{n+1}(\eta_k))=1$. This can always be accomplished by replacing the original $C_n(\eta_k)$ by its intersection with the set $[x:v_x(C_{n+1}(\eta_k))=1]$. Since $P1_{C_{n+1}(\eta_k)}=1$ a.e. (λ) on $C_n(\eta_k)$, the intersection remains a support of $\eta_k P^n$. Now sets $C_n(\eta_k)$ have this property: if $x\in C_n(\eta_k)$, then v_x is absolutely continuous to $\eta_k P^n$. Hence, if $x\in \bigcup_{n=1}^\infty C_n(\eta_k)$ then $h'(v_x)\geq h'(\eta_k)$.

Now let $X_k = \bigcup_{n=1}^{\infty} C_n(\eta_k)$ in the strict sense of set union. Then $\lambda(X - X_k) = 0$ so that $\lambda(X - \bigcap_{k=1}^{\infty} X_k) = 0$. There must be a point $x \in \bigcap_{k=1}^{\infty} X_k$. For this x, $h'(v_x) \ge h'(\eta_x)$ for $k = 1, 2, \dots$, which is impossible since $h'(v_x)$ is a finite integer and $\lim_{k \to \infty} h'(v_k) = +\infty$.

Combining Lemmas 2.7, 2.6, we have the following:

THEOREM 2.2. If a Markov operator P is conservative, ergodic and λ -continuous, then the period δ of P is a finite positive integer and for any consequent sequence $\{C_n\}$ there is a positive integer N such that $C_n \cap C_{n+\delta}$ is non-null for all $n \geq N$.

Theorem 2.3. Let P be a λ -continuous, conservative, ergodic Markov operator. Let δ be the period of P and μ be a non-null invariant measure of P. Let $C_0, C_1, \cdots, C_{\delta-1}$ be the totality of distinct $\mathscr{C}^{(\delta)}$ atoms with $C_0 = A(C_1)$, $C_1 = A(C_2), \cdots, C_{\delta-2} = A(C_{\delta-1})$. Then each μI_{C_1} is an invariant measure of $P^{n\delta}$ and every invariant measure of $P^{n\delta}$ is of the form $\sum_{i=0}^{\delta-1} \alpha_i \mu I_{C_i}$. Furthermore, we have $\mu I_{C_0}P = \mu I_{C_1}, \cdots, \mu I_{C_{\delta-2}}P = \mu I_{C_{\delta-1}}$, $\mu I_{C_{\delta-1}}P = \mu I_{C_0}$ and $\mu(C_0) = \mu(C_1) = \cdots = \mu(C_{\delta-1})$. Hence if P has a finite invariant measure then all invariant measures of iterates of P are finite measures.

Proof. Since C_i is P^{δ} -closed, $I_{C_i}P^{\delta} = I_{C_i}P^{\delta}I_C$. Since P^{δ} is conservative, $X - C_i$ is P^{δ} -closed. Hence $I_{X-C_i}P^{\delta}I_{C_i} = 0$ and $P^{\delta}I_{C_i} = I_{C_i}P^{\delta}I_{C_i} + I_{X-C_i}P^{\delta}I_C = I_{C_i}P^{\delta}I_{C_i} = I_{C_i}P^{\delta}I_{C_i} = I_{C_i}P^{\delta}I_{C_i} = \mu I_{C_i}$ and μI_{C_i} is P^{δ} -invariant. Now, for $f \in L_{\infty}(\mu)$,

$$\langle \mu I_{C_1}, f \rangle = \langle \mu, I_{C_1} f \rangle = \langle \mu P, I_{C_1} f \rangle$$

= $\langle \mu I_{C_1} P, I_{C_1} f \rangle + \langle \mu I_{Y-C_2} P, I_{C_1} f \rangle$.

Since the support of $\mu I_{C_0}P$ is C_0 and the support of $\mu I_{X-C_0}P$ is $X-C_1$, we have

$$\langle \mu I_{C_0} P, I_{C_0} f \rangle = \langle \mu I_{C_0} P, f \rangle$$

and

$$\langle \mu I_{X-C_0} P, I_{C_1} f \rangle = 0.$$

Hence

$$\langle \mu I_{C}, f \rangle = \langle \mu I_{C}, P, f \rangle.$$

Since (2.8) is true for every $f \in L_{\infty}(\mu)$, $\mu I_{C_0}P = \mu I_{C_1}$. By the same argument, we have $\mu I_{C_1}P = \mu I_{C_2}$, \cdots , $\mu I_{C_{\delta-1}}P = \mu I_{C_0}$. Substituting 1 for f in (2.8) we then obtain $\mu(C_0) = \mu(C_1)$. Similarly $\mu(C_1) = \mu(C_2)$, \cdots , $\mu(C_{\delta-1}) = \mu(C_0)$.

Now every C_i is also a $\mathscr{C}^{(n\delta)}$ atom for every positive integer n. Hence $P^{n\delta}$ acting on C_i only is conservative and ergodic. It follows that for any $P^{n\delta}$ -invariant measure v, vI_{C_i} must be a constant multiple of μI_{C_i} . Hence v is of the form $\sum_{i=0}^{\delta-1} \alpha_i \mu I_{C_i}$.

III. Asymptotic properties of $[p^n(x, y)]$ for a λ -continuous, conservative, ergodic Markov operator. All through this section, the Markov operator P is assumed to be λ -continuous, conservative and ergodic. Then P possesses a nontrivial σ -finite invariant measure μ which is unique up to a constant multiple [8]. μ is equivalent to λ . Hence "a.e. (λ) " is the same as "a.e. (μ) " and $L_{\infty}(\lambda)$ and $L_{\infty}(\mu)$ are the same space.

LEMMA 3.1. If $f \in L_a(\mu)$, $1 \le q < \infty$, then Pf, given by

$$Pf = Pf^+ - Pf^-$$

belongs to $L_a(\mu)$ also. Furthermore, we have

$$\|Pf\|_q \le \|f\|_q$$

where $\| \|_a$ denotes the $L_a(\mu)$ norm.

Proof. We only need to prove for the case $1 \le q < \infty$. For any non-negative function f, by Jensen's inequality, for (λ) almost all x

(3.1)
$$|Pf(x)|^q \leq \int p(x,y) |f(y)|^q \lambda(dy).$$

Hence

(3.2)
$$\int \mu(dx) \left| Pf(x) \right|^{q} \leq \int \mu(dx) \left\{ \int p(x,y) \left| f(y) \right|^{q} \lambda(dy) \right\} = \int \mu(dy) \left| f(y) \right|^{q}.$$

Hence $f \in L_q(\mu)$ implies that $Pf \in L_q(\mu)$ and $\|Pf\|_q \le \|f\|_q$. Then for the general case that f may take on both positive and negative values and $f \in L_q(\mu)$, Pf^+ , Pf^- are in $L_q(\mu)$ and, therefore, Pf is well defined and is in $L_q(\mu)$. Jensen's inequality again implies (3.1) and from which (3.2) and the equality $\|Pf\|_q \le \|f\|_q$ follow immediately.

LEMMA 3.2. If f is non-negative and $f \in L_q(\mu)$ where $1 \le q \le +\infty$, then $\liminf_{n\to\infty} P^n f$ is equal to a finite constant a.e. (λ) . If, in addition, the invariant measure μ is infinite and $q < +\infty$, then $\liminf_{n\to\infty} P^n f = 0$ a.e. (λ) .

Proof. Since f is non-negative, we have, by Fatou's lemma,

$$\liminf_{n\to\infty}\int p(x,y)P^nf(y)\lambda(dy)\geq \int p(x,y)\liminf_{n\to\infty}P^nf(y)\lambda(dy).$$

Hence $\liminf_{n\to\infty}P^nf \leq \int P \liminf_{n\to\infty}P^nf$ so that $\liminf_{n\to\infty}P^nf$ is an excessive function. (A non-negative function g is excessive if $Pf \leq f$. For the properties of excessive functions see [8, §VI].) Since excessive functions for a conservative, ergodic Markov operator are constant functions $\liminf_{n\to\infty}P^nf=\text{constant}$ a.e. (λ). Since $\inf_{k\geq n}P^kf \leq P^kf$ and $\|P^kf\|_q \leq \|f\|_q$ by Lemma 3.1, we have also $\inf_{k\geq n}P^kf \in L_q(\mu)$ and $\|\inf_{k\geq n}P^kf\|_q \leq \|f\|_q$. Hence $\|\liminf_{n\to\infty}P^nf\|_q \leq \|f\|_q$. Since $\mu(X)=\infty$ and $\liminf_{n\to\infty}P^nf$ is a constant function, we must have $\liminf_{n\to\infty}P^nf=0$ a.e. (λ).

Now we shall proceed to study asymptotic properties of sequences $\{P^n f\}$. We shall again, as in §II, choose a definite version of the density function p(x, y) of P to satisfy

- 1. $p(x, y) \ge \text{ for all } (x, y) \in X \times X \text{ and }$
- 2. $\int p(x, y)\lambda(x, y) = 1$ for all $x \in X$.

The iterates $p^{(n)}(x, y)$ will be given inductively by (1.3). They also satisfy 1 and 2. For every positive integer n, every $x \in X$ and $E \in \mathcal{X}$ define

(3.3)
$$v_x^{(n)}(E) = \int_E p^{(n)}(x, y) \lambda(dy).$$

 $v_x^{(n)}$ are probability measures and $v_x^{(n+1)} = v_x^{(n)} P$. Since P is ergodic the union of the supports of $v_x^{(n)}$, $n = 1, 2, \cdots$, is X. Now for every non-negative f, $P^n f(x)$ shall be given definitely by

(3.4)
$$P^{n}f(x) = \int v_{x}^{(n)}(dy)f(y) = \int p^{(n)}(x,y)f(y)\lambda(dy).$$

Let f be a fixed non-negative function which belongs to $L_q(\mu)$ for some q satisfying $1 \le q \le +\infty$. By Lemma 3.2 there is a non-negative number a such that

$$\liminf_{n\to\infty} P^n f(x) = a$$

for (λ) almost all x. Hence for (λ) almost all x there is an increasing sequence $\{n_i\}$

(the sequence depends on x) of positive integers such that $\lim_{i\to\infty} P^{n_i}f(x) = a$. Let $\rho(x)$ be the supremum of all non-negative integers k with the property that there is an increasing sequence $\{n_i\}$ of positive integers such that

$$\lim_{i \to \infty} P^{(n_i+j)} f(x) = a \quad \text{for} \quad j = 0, \dots, k.$$

 $\rho(x)$ is defined for (λ) almost all x and $0 \le \rho(x) \le +\infty$. We shall show that $\rho(x) = +\infty$ for (λ) almost all x.

LEMMA 3.3. Let η be a probability measure, and let $\{g_n\}$ be a sequence of η -integrable non-negative functions. If $\liminf_{n\to\infty} g_n \geq a$ a.e. (η) and $\lim_{n\to\infty} \int g_n d\eta = a$, then there is an increasing sequence $\{n_i\}$ of positive integers such that $\{g_n\}$ converges a.e. (η) to a.

Proof. If a = 0, then $\{g_n\}$ converges to 0 in $L_1(\eta)$, hence, there is a subsequence $\{g_{n_i}\}$ converging a.e. (η) to 0. Suppose a > 0. We shall find an increasing sequence $\{n_i\}$ of positive integers such that

(3.5)
$$\eta(F_i) < \frac{2+a}{2i}$$
 for *i* sufficiently large

where

$$F_i = \left[x : g_{n_i}(x) \ge a + \frac{1}{2^i} \right].$$

(3.5) implies

(3.6)
$$\limsup_{i \to \infty} g_{n_i} \leq a \text{ a.e. } (\eta).$$

(3.6) and the fact that $\liminf_{i\to\infty} g_{n_i} \ge a$ imply $\lim_{i\to\infty} g_{n_i} = a$ a.e. (η) .

Now there is an increasing sequence $\{n_i\}$ of positive integers satisfying the following two conditions for every i:

- 1. $\int g_{n} d < a + 1/4^{i}$,
- 2. $\eta[g_{n_i} \leq a 1/4^i] < 1/4^i$.

Then, if $a - 1/4^i \ge 0$, we have

$$a + \frac{1}{4^{i}} > \int g_{n_{i}} d\eta = \int_{[g_{n_{i}} \ge a + 1/2^{i}]} g_{n_{i}} d\eta + \int_{[a + 1/2^{i} > g_{n_{i}}^{r} > a - 1/4^{i}]} g_{n_{i}} d\eta + \int_{[g_{n_{i}} \le a - 1/4^{i}]} g_{n_{i}} d\eta + \int_{[g_{n_{i}} \le a - 1/4^{i}]} g_{n_{i}} d\eta$$

$$\geq \left(a + \frac{1}{2^{i}} \right) \eta(F_{i}) + \left(a - \frac{1}{4^{i}} \right) \eta \left[a + \frac{1}{2^{i}} > g_{n_{i}} > a - \frac{1}{4^{i}} \right]$$

$$\geq \left(a + \frac{1}{2^{i}} \right) \eta(F_{i}) + \left(a - \frac{1}{4^{i}} \right) \left\{ \eta \left[a + \frac{1}{2^{i}} > g_{n_{i}} \right] - \frac{1}{4^{i}} \right\}$$

$$= \left(a + \frac{1}{2^{i}} \right) \eta(F_{i}) + \left(a - \frac{1}{4^{i}} \right) \left[1 - \eta(F_{i}) - \frac{1}{4^{i}} \right]$$

$$= \frac{2 + 1}{4^{i}} \eta(F_{i}) + \left(a - \frac{1}{4^{i}} \right) \left(1 - \frac{1}{4^{i}} \right).$$

Hence $\eta(F_i) < (2+a)/2^i$.

The following lemma is a slight improvement of Lemma 3.3. The proof is trivial.

LEMMA 3.3'. Let η be a probability measure, and let $\{g_n^{(j)}\}$, $j=0,1,\dots,k$, be k+1 sequences of η -integrable, non-negative functions. If $\liminf_{n\to\infty}g_n^{(j)}\geq a$ a.e. (η) and $\lim_{n\to\infty}\int g_n^{(j)}d\eta=a$ for $j=0,1,\dots,k$, then there is an increasing sequence $\{n_i\}$ of positive integers such that $\lim_{n\to\infty}g_n^{(j)}=a$ a.e. (η) for $j=0,1,\dots,k$.

In what follows f shall be a fixed non-negative function in $L_q(\mu)$, and a is equal to $\liminf_{n\to\infty} P^n f$ a.e.(λ). Since $P^m f$, $m=1,2,\cdots$, are also in $L_q(\mu)$, there is a set E_0 of 0 λ -measure such that, for every $x \notin E_0$, we have, simultaneously,

- 1. $\liminf_{n\to\infty} P^n f(x) = a$,
- 2. $P^m f(x)$ is finite for $m = 1, 2, \dots$ 2 is the same as,
- 2'. f is $v_{x}^{(m)}$ -integrable for $m = 1, 2, \dots$, where $v_{x}^{(m)}$ is given by (3.3).

LEMMA 3.4. Let x_0 be a point of $X - E_0$. If $\{n_i\}$ is an increasing sequence of positive integers such that $\lim_{i \to \infty} P^{n_i + j} f(x_0) = a$ for $j = 0, 1, \dots, k$, then for every positive integer m there is a subsequence $\{n_i'\}$ of $\{n_i\}$ such that

$$\lim_{i \to \infty} P^{(n'_i - m) + j} f(x) = a \quad \text{for } j = 0, 1, \dots, k$$

for (λ) almost all x on the support of the probability measure $v_{x_0}^{(m)}$.

Proof. Since

$$P^{n_i+j}f(x_0) = \int P^{(n_i-m)+j} f dv_{x_0}^{(m)},$$

we have

$$\lim_{i \to \infty} \int P^{(n_i - m) + j} f dv_{x_0}^{(m)} = a \text{ for } j = 0, 1, \dots, k.$$

Since $\liminf_{i\to\infty} P^{(n_i-m)+j} f \ge a$ a.e. $(v_{x_0}^{(m)})$, Lemma 3.3' is applicable. Hence there exists a subsequence $\{n_i'\}$ of $\{n_i\}$ such that for (λ) almost all x on the support of $v_{x_0}^{(m)}$ we have

$$\lim_{i \to \infty} P^{(n'_i - m) + j} f(x) = a \quad \text{for } j = 0, 1, \dots, k.$$

LEMMA 3.5. If, for some $x \in X - E_0$, $\rho(x) \ge k$, then $\rho(x) \ge k$ for (λ) almost all x.

Proof. If $\rho(x_0) \ge k$ where $x_0 \in X - E_0$, then there is an increasing sequence $\{n_i\}$ of positive integers such that $\lim_{i \to \infty} P^{n_i+j} f(x_0) = a$ for $j = 0, 1, \dots, k$. By Lemma 3.3, $\rho(x) \ge k$ for (λ) almost all x belonging to the support of the measure $v_{x_0}^{(m)}$. Let the support of $v_{x_0}^{(m)}$ be C_m . $\{C_m\}$ is a consequent sequence. Hence $\lambda(X - \bigcup_{m=1}^{\infty} C_m) = 0$. Now $\rho(x) \ge k$ for (λ) almost all x in $\bigcup_{m=1}^{\infty} C_m$. Hence the lemma is proved.

LEMMA 3.6. If P is aperiodic, then for every non-negative integer k, there is an $x_0 \in X - E_0$ for which $\rho(x_0) \ge k$.

Proof. The lemma is obviously true for k = 0. Suppose the lemma is true for k. There is an $x_0 \in X - E_0$ and an increasing sequence $\{n_i\}$ of positive integers for which

$$\lim_{i \to \infty} P^{n_i + j} f(x_0) = a \text{ for } j = 0, 1, \dots, k.$$

Let C_m be the support of the measure $v_{x_0}^{(m)}$. $\{C_m\}$ is a consequent sequence. Since P is aperiodic, by Theorem 2.2, there is a positive integer N such that $C_N \cap C_{N+1}$ is non-null. By Lemma 3.4 there is a subsequence $\{n_i'\}$ of $\{n_i\}$ for which we have, simultaneously, $\lim_{i\to\infty} P^{(n_i'-N)+j}f(x) = a, j=0,1,\cdots,k$, for (λ) almost all x in C_N and $\lim_{i\to\infty} P^{(n_i'-N-1)+j}f(x) = a, j=0,1,\cdots,k$ for (λ) almost all x in C_{N+1} . Since $C_N \cap C_{N+1}$ is non-null, there is a point y in $C_N \cap C_{N+1}$ and $y \notin E_0$ such that

$$\lim_{i \to \infty} P^{(n'_i - N) + j} f(y) = a \quad \text{and} \quad \lim_{i \to \infty} P^{(n'_i - N - 1) + j} f(y) = a$$

for $i = 0, 1, \dots, k$. Hence we have

$$\lim_{i \to \infty} P^{(n'_i - N - 1) + j} f(y) = a \quad \text{for} \quad j = 0, 1, \dots, k + 1.$$

Therefore $\rho(y) \ge k + 1$ and the lemma is proved.

LEMMA 3.7. If P is aperiodic, then for (λ) almost all x and for every positive integer k, there is an increasing sequence $\{n_i\}$ of positive integers for which

$$\lim_{n\to\infty} P^{n_i+j}f(x) = a \quad for \quad j=0,1,\cdots,k.$$

In other words, $\rho(x) = \infty$, for (λ) almost all x.

Proof. It follows from Lemma 3.5 and Lemma 3.6 that for every positive integer k, $\rho(x) \ge k$ for (λ) almost all x. Hence $\rho(x) = \infty$ for (λ) almost all x.

LEMMA 3.8. If P is a periodic and λ is a finite measure, then, for every positive number ε , there is a set A with $\lambda(X-A) < \varepsilon$ and an increasing sequence $\{n_i\}$ of positive integers such that the sequence of functions:

$$P^{n_0}f, P^{n_1}f, P^{n_1+1}f, P^{n_2}f, P^{n_2+1}f, P^{n_2+2}f, \cdots$$

converges uniformly to a on A where $a = \lim_{n \to \infty} P^n f$.

Proof. Let x_0 be a point of $X - E_0$ for which $\rho(x_0) = \infty$, and let C_n be the support of $v_{x_0}^{(n)}$. Then $\lambda(X - \bigcup_{n=1}^{\infty} C_n) = 0$ and, hence, there is a positive integer b such that $\lambda(X - \bigcup_{n=1}^{b} C_n) < \varepsilon/2$. Let $B = \bigcup_{n=1}^{b} C_n$.

Since $\rho(x_0) = \infty$, for every positive integer k, there is an increasing sequence $\{n_i^{(k)}\}$ of positive integers such that

$$\lim_{i \to \infty} P^{n_i^{(k)} + 1}(x_0) = a, \dots, \lim_{i \to \infty} P^{n_i^{(k)} + k} f(x_0) = a.$$

Applying Lemma 3.4 repeatedly for b times, we obtain a subsequence $\{m_i^{(k)}\}$ of $\{n_i^{(k)}\}$ such that, for every integer m, $1 \le m \le b$,

$$\lim_{i \to \infty} P^{\{m^{(k)} - m\} + 1} f(x) = a, \dots, \lim_{i \to \infty} P^{\{m^{(k)} - m\} + k} f(x) = a$$

for (λ) almost all x on C_m . Let $k \ge b$. Then

$$\lim_{i \to \infty} P^{m^{(k)}} f(x) = a, \quad \lim_{i \to \infty} P^{m^{(k)} + 1} f(x) = a, \dots, \quad \lim_{i \to \infty} P^{m^{(k)} + (k-b)} f(x) = a$$

for (λ) almost all x on B. Let $l_i^k = m_i^{(k+b)}$. Then for every non-negative integer k, the sequence $\{l_i^{(k)}\}$ has the property that

$$\lim_{i \to \infty} P_i^{l(k)} f(x) = a, \quad \lim_{i \to \infty} P_i^{l(k)} f(x) = a, \dots, \quad \lim_{i \to \infty} P_i^{l(k)+k} f(x) = a$$

for (λ) almost all x on B. Now, for every non-negative integer k, let n_k be a member of the sequence $\{l_i^{(k)}\}$ such that

$$\lambda \left\{ B \cap \left[\left(\left| P^{n_k} f - a \right| > \frac{1}{2^k} \right) \cup \left(\left| P^{n_k+1} f - a \right| > \frac{1}{2^k} \right) \cup \cdots \right. \\ \left. \left. \left(\left| P^{n_k+k} f - a \right| > \frac{1}{2^k} \right) \right] \right\} < \frac{1}{2^k}.$$

Then the sequence of functions:

$$(3.7) P^{n_0}f, P^{n_1}f, P^{n_1+1}f, P^{n_2}f, P^{n_2+1}f, P^{n_2+2}f, \cdots$$

converges to a a.e. (λ) on B. By Egoroff's theorem, there is a subset A of B such that $\lambda(B-A) < \varepsilon/2$ and the sequence (3.7) converges uniformly to a on A.

The following lemma follows immediately from Lemma 3.8.

LEMMA 3.9. If P is aperiodic, then, for every positive number ε , there is an increasing sequence $\{n_i\}$ of positive integers such that the set

(3.8)
$$E = \bigcap_{i=1}^{\infty} \bigcap_{k=0}^{i} \left[P^{n_i + k} f < a + \varepsilon \right]$$

has positive λ measure.

LEMMA 3.10. If E is a set of positive λ measure, then $\lim_{n\to\infty} (I_{E'}P)^n 1 = 0$ a.e. (λ) where E' = X - E.

Proof. Let $v \in \mathcal{A}^+(\lambda)$. Then

$$v(X) = vP^{n}(X) = \langle vP^{n}, 1 \rangle$$

$$= \langle v \sum_{k=0}^{n-1} (I_{E'}P)^{k} I_{A} P^{n-k}, 1 \rangle + \langle v(I_{E'}P)^{n}, 1 \rangle$$

$$= \langle v \sum_{k=0}^{n-1} (I_{E'}P)^{k} I_{A}, 1 \rangle + v(I_{E'}P)^{n}(X)$$

$$= \langle v \sum_{k=0}^{n-1} (I_{E'}P)^{k} I_{A} \rangle + v(I_{E'}P)^{n}(X).$$

Since E is conservative and P is ergodic, we have

$$\lim_{n \to \infty} \sum_{k=0}^{n-1} (I_E, P)^k 1_E = 1 \text{ a.e. } (\lambda).$$

Hence

(3.9)
$$\lim_{n\to\infty} \nu(I_E, P)^n(X) = 0.$$

Setting $v = v_x^{(1)}$ in (3.9), we obtain $\lim_{n\to\infty} P(I_{E'}P)^n 1(x) = 0$. Hence $\lim_{n\to\infty} (I_{E'}P)^n 1 = 0$ a.e. (λ) .

We recall that the invariant measure μ for P may be finite or infinite. We shall first study the case that μ is finite. μ is then always normalized to be a probability measure.

LEMMA 3.11. If the invariant measure μ of P is finite, then, for every $v \in \mathcal{A}^+(\lambda)$, the measures v, vP, vP^2 , ... are uniformly absolutely continuous with respect to μ .

Proof. Let Q be the μ -reverse of P. Q is a μ -measurable Markov operator characterized by the following equality

(3.10)
$$\int (Pg)h \, d\mu = \int g(Qh) \, d\mu$$

where g, h are non-negative functions (cf. [8, §VI]). Let $g = dv/d\mu$, then $Q^n g = dv P^n/d\mu$. Construct the infinite product space $\Omega = \prod_{n=0}^{\infty} X_n$ and the product σ -algebra $\mathscr{F} = \prod_{n=0}^{\infty} \mathscr{X}_n$ of subsets of Ω where $X_n = X$, $\mathscr{X}_n = \mathscr{X}$ for $n = 0, 1, 2, \dots$. A probability measure μ on \mathscr{F} is then defined by

$$\mu[X_0 \in A_0, X_1 \in A_1, \dots, X_n \in A_n]$$

$$= \int_{A_0} \mu(dx_0) \int_{A_1} \lambda(dx_1) \dots \int_{A_n} \lambda(dx_n) p(x_0, x_1) p(x_1, x_2) \dots p(x_{n-1}, x_n)$$

where $A_i \in \mathcal{X}$ for $i = 0, 1, \dots, n$. Coordinates X_0, X_1, \dots , considered as random variables defined on Ω , constitute a stationary Markov process. $Q^n g(X_n)$ is then

the conditional expectation of $g(X_0)$ given random variables X_n, X_{n+1}, \cdots . By the well-known martingale convergence theorem $\{Q^n g(X_n)\}$ converges in $L_1(\mu)$ and $Q^n g(X_n)$ are uniformly μ -integrable. Since the process is stationary, every X_n has μ as its distribution, hence

$$\int_{[Q^ng\geq K]} Q^ngd\mu = \int_{[Q^ng(X_n)\geq K]} Q^ng(X_n)d\mu.$$

It follows that the functions $Q^n g$ are uniformly μ -integrable. Hence the measures νP^n are uniformly absolutely continuous with respect to μ .

THEOREM 3.1. If P is a λ -continuous, conservative, ergodic and aperiodic Markov operator whose invariant μ is finite (μ is then normalized), then, for every $f \in L_{\infty}(\lambda)$, $\{P^n f\}$ converges a.e. (λ) to $\{f d\mu\}$.

Proof. If the theorem is true for non-negative functions then, applying the result to f^+ , f^- , we obtain the same conclusion for a function f which takes on both positive and negative values. So we shall only prove the theorem for a non-negative f. Let us assume $f \le 1$ a.e. (λ) .

By Lemma 3.2 $\liminf_{n\to\infty} P^n f$ is equal to a constant a a.e (μ). Let ε be an arbitrary positive number. By Lemma 3.9, there is an increasing sequence $\{n_i\}$ of positive integers such that the set E given by (3.8) has positive λ measure. Let x_0 be an arbitrary point of X and $v_{x_0}^{(m)}$ be given by (3.3). Then

$$P^{m+n_{i}+i}f(x_{0}) = \int P^{n_{i}+i}fdv_{x_{0}}^{(m)}$$

$$= \int \left[\sum_{k=0}^{i-1} (I_{E'}P)^{k}I_{E}P^{n_{i}+i-k}f + (I_{E'}P)^{i}P^{n_{i}}f\right]dv_{x_{0}}^{(m)}$$

$$\leq (a+\varepsilon)\int_{k=0}^{i-1} (I_{E'}P)^{k}1_{E}dv_{x_{0}}^{(m)} + \int (I_{E'}P)^{i}1dv_{x_{0}}^{(m)}$$

$$\leq (a+\varepsilon) + \int (I_{E'}P)^{i}1dv_{x_{0}}^{(m)}.$$

By Lemma 3.10 $\lim_{i\to\infty}(I_{E'}P)^i1=0$ a.e. (μ) . Hence, for every positive integer δ , there is an integer i_0 and a set A with $\mu(X-A)<\delta$ such that $(I_{E'}P)^{i_0}1<\varepsilon$ on A. The number δ is chosen to satisfy the condition that $v_{x_0}^{(m)}(F)<\varepsilon$ for $m=1,2,\cdots$ whenever $\mu(F)<\delta$. This can be done because $v_{x_0}^{(1)}, v_{x_0}^{(2)}, \cdots$ are uniformly absolutely continuous with respect to μ (Lemma 3.11). Hence for any positive integer m,

$$P^{m+n_{i_0}+i_0}f(x_0) \leq (a+\varepsilon) + \int_A (I_{E'}P)^{i_0}1dv_{x_0}^{(m)} + v_{x_0}^{(m)}(X-A)$$

$$\leq a+3\varepsilon.$$

Hence we have

$$\limsup_{n\to\infty} P^n f(x_0) \le a + 3\varepsilon.$$

Since ε is an arbitrary positive number,

(3.11)
$$\limsup_{n \to \infty} P^n f(x_0) \le a.$$

(3.11) holds for every $x_0 \in X$, hence $\lim_{n \to \infty} P^n f = a$ a.e. (λ). Since μ is the normalized invariant measure of P, $\int P^n f d\mu = \int f d\mu$ for $n = 1, 2, \cdots$. Now $\lim_{n \to \infty} \int P^n f d\mu = a$, hence $\int f d\mu = a$ and the proof of the theorem is then complete.

THEOREM 3.2. If P is a λ -continuous, conservative, ergodic and aperiodic Markov operator whose invariant measure μ is finite, and if $f \in L_q(\mu)$, where $1 \le q < \infty$, then the sequence $\{P^n f\}$ converges in $L_q(\mu)$ to $\int f d\mu$.

Proof. If $g \in L_{\infty}(\mu)$, by Theorem 3.1, $\{P^n g\}$ converges a.e. (μ) to $\int g d\mu$. Hence $\{P^n g\}$ converges to $\int g d\mu$ in $L_q(\mu)$. Since $L_{\infty}(\mu)$ is dense in $L_q(\mu)$ in the sense of $L_q(\mu)$ norm, we have, for every $f \in L_q(\mu)$ and every $\varepsilon > 0$, a $g \in L_{\infty}(\mu)$ such that $\|f - g\|_q < \varepsilon/2$ and $\|\int f d\mu - \int g d\mu \| < \varepsilon/2$. By Lemma 3.1, $\|P^n (f - g)\|_q \le \|f - g\|_q$, hence

$$\begin{aligned} \left\| P^{n}f - \int f d\mu \right\|_{q} &\leq \left\| P^{n}(f - g) \right\|_{q} + \left\| P^{n}g - \int g d\mu \right\|_{q} + \left| \int f d\mu - \int g d\mu \right| \\ &\leq \frac{\varepsilon}{2} + \left\| P^{n}g - \int g d\mu \right\|_{q} + \frac{\varepsilon}{2}. \end{aligned}$$

Therefore $\limsup_{n\to\infty} \|P^n f - \int f d\mu\|_q \le \varepsilon$ and the conclusion of the theorem follows.

THEOREM 3.3. If P is a λ -continuous, conservative, ergodic and aperiodic Markov operator whose invariant measure μ is finite and if $f \ge 0$ and $f \in L_1(\mu)$, then $\liminf_{n\to\infty} P^n f = \int f d\mu$ a.e. (μ) .

Proof. Let x be a fixed point of X and $v_x^{(m)}$ be given by (3.3). Let ε be an arbitrary positive number. Since $v_x^{(m)}$, $m=1,2,\cdots$, are uniformly absolutely continuous to μ by Lemma 3.11, there is a positive number δ such that $\mu(E) < \delta$ implies $v_x^{(m)}(E) < \varepsilon$ for $m=1,2,\cdots$. Now, by Theorem 3.2, $\{P^n f\}$ converges in $L_1(\mu)$ to $\int f d\mu$, hence there is an integer n_0 such that $\mu[P^{n_0} f < \int f d\mu - \varepsilon] < \delta$. Hence for any positive integer m

$$P^{m+n_0}f(x) = \int v_x^{(m)}(dy)P^{n_0}f(y)$$

$$\geq \int_{[P^{n_0}f\geq \int fd\mu-\epsilon]} v_x^{(m)}(dy)P^{n_0}f(y)$$

$$\geq v_x^m \left[P^{n_0}f \geq \int fd\mu-\epsilon \right] \left(\int fd\mu-\epsilon \right)$$

$$\geq (1-\epsilon) \left(\int fd\mu-\epsilon \right).$$

Hence $\liminf_{n\to\infty} P^n f(x) \ge \int f d\mu$. But by Fatou's lemma

$$\int \liminf_{n\to\infty} P^n f d\mu \leq \liminf_{n\to\infty} \int P^n f d\mu = \int f d\mu.$$

Hence

$$\liminf_{n\to\infty} P^n f = \int f d\mu \text{ a.e. } (\mu).$$

THEOREM 3.4. Let P and μ be as in Theorem 3.3. Then, for (λ) almost all $x \{p^{(n)}(x,\cdot)\}$ converges in $L_1(\lambda)$ to $d\mu/d\lambda$, and $\{p^{(n)}(x,y)\}$ converges to $d\mu(y)/d\lambda$ in $L_1(v \times \lambda)$ for any $v \in \mathcal{A}^+(\lambda)$. We also have $\liminf_{n\to\infty} p^{(n)}(x,y) = d\mu/d\lambda(y)$ for $(\lambda \times \lambda)$ almost all (x,y).

Proof. Define $\bar{p}^{(n)}(x, y)$ by

(3.12)
$$\bar{p}^{(n)}(x,y) = p^{(n)}(x,y) \frac{d\lambda}{du}(y)$$

and $\bar{p}(x,y) = \bar{p}^{(1)}(x,y)$. Then $\bar{p}^{(n)}(x,y)$ is the density function of P^n with respect to the invariant measure μ , and we have for (μ) almost all x

$$\int \bar{p}(x,y)\mu(dy)=1,$$

and also for (μ) almost all y,

$$\int \bar{p}(x,y)\mu(dx) = 1.$$

 $\bar{p}(\cdot,\cdot)$ is "doubly stochastic." Let Q be the μ -reverse of P. Then (3.10) implies that for every non-negative function h

$$Qh(y) = \int \bar{p}(x, y)h(x)\mu(dx).$$

Thus, Q is μ -continuous. Let $q^{(n)}(x, y)$ be the density function of Q^n with respect to μ . Then

$$q^{(n)}(x, y) = \bar{p}^{(n)}(y, x).$$

Since P is conservative, so is Q [5, Theorem 3.1]. Since a Q-closed set is also P-closed [8, Lemma 7.2], Q is ergodic. Since the same relationship holds between P^n and Q^n as P and Q, Q is also aperiodic. Now, let x be fixed and let us consider $\bar{p}(x,\cdot)$ as a function of the second variable alone. Thus for (μ) almost all $x, \bar{p}(x,\cdot)$ is an element of $L_1(\mu)$ with its μ -integral equal to 1. We also have

$$Q^n \bar{p}(x,\,\cdot\,) = \bar{p}^{(n+1)}(x,\,\cdot\,).$$

Applying Theorem 3.3 to Q and $\bar{p}(x, \cdot)$ we have

$$\lim \inf \bar{p}^{(n)}(x,y) = 1$$

for $(\mu \times \mu)$ almost all (x, y). Hence it follows that

$$\lim\inf p^{(n)}(x,y) = \frac{d\mu}{d\lambda}(y)$$

for $(\lambda \times \lambda)$ almost all (x, y). Furthermore, applying Theorem 3.2, we have, for (μ) almost all x, $\{\bar{p}^{(n)}(x, \cdot)\}$ converges in $L_1(\mu)$ to 1. Now

$$\int \left|\bar{p}^{(n)}(x,y)-1\right|\mu(dy)=\int \left|p^{(n)}(x,y)-\frac{d\mu}{d\lambda}(y)\right|\lambda(dy),$$

hence $\{p^{(n)}(x,\cdot)\}\$ converges in $L_1(\lambda)$ to $d\mu/d\lambda$. Now, let

$$g_n(x) = \int \left| p^{(n)}(x,y) - \frac{d\mu}{d\lambda}(y) \right| \lambda(dy) = \int \left| \bar{p}^{(n)}(x,y) - 1 \right| \mu(dy),$$

 $\{g_n(x)\}\$ converges to 0 a.e. (μ) . We also have

$$g_n(x) \le \int \bar{p}^{(n)}(x,y)\mu(dy) + 1 = 2.$$

Hence $\{g_n(x)\}$ converges to 0 in $L_1(v)$ for any $v \in \mathcal{A}^+(\lambda)$. Hence

$$\int \int \left| p^{(n)}(x,y) - \frac{d\mu}{d\lambda}(y) \right| \lambda(dy)v(dx) \to 0$$

and $\{p^{(n)}(x, y)\}$ converges to $d\mu(y)/d\lambda$ in $L_1(v \times \lambda)$.

THEOREM 3.5. Let P be a λ -continuous, conservative and ergodic Markov operator whose nontrivial invariant measure μ is finite (μ is normalized as usual). Let the period of P be δ and $C_0, C_1, \dots, C_{\delta-1}$ be the totality of distinct $\mathscr{C}^{(\delta)}$ atoms with $C_0 = A(C_1), \dots, C_{\delta-2} = A(C_{\delta-1})$. Let $f \in L_1(\mu)$ and c_0, c_1, \dots be defined by

$$c_{i} = \delta \int_{C_{i}} f d\mu \quad \text{for } i = 0, \dots, \delta - 1,$$

$$c_{i} = c_{i} \quad \text{if} \quad i \ge \delta, \quad i = n\delta + j, \quad 0 \le j \le \delta - 1.$$

Then

- 1. if f also belongs to $L_{\infty}(\mu)$, then for every non-negative integer k the sequence $\{P^{n\delta+k}f\}$ converges to $\sum_{i=0}^{\delta-1}c_{i+k}1_{C_i}$ a.e. (λ) ,
- 2. if f belongs to $L_q(\mu)$ where $1 \leq q < \infty$, then for every non-negative integer k the sequence $\{P^{n\delta+k}f\}$ converges in $L_q(\mu)$ to $\sum_{i=0}^{\delta-1} c_{i+k} 1_{C_i}$,
 - 3. if $f \ge 0$, then for every non-negative integer k,

$$\lim_{n\to\infty}\inf P^{n\delta+k}f=\sum_{i=0}^{\delta-1}c_{i+k}1_{C_i}\ a.e.\ (\lambda).$$

Proof. By Theorem 2.3, μI_{C_i} is P^{δ} -invariant, $\mu(C_i) = 1/\delta$, and $\mu I_{C_i} P^k = \mu I_{C_{i+k-j\delta}}$ where j is the largest non-negative integer for which $j\delta \leq i+k$. Hence

$$\int_{C_i} P^k f d\mu = \int f d(\mu I_{C_i} P^k) = \int f d\mu I_{C_{i+k-j\delta}} f d\mu = c_{i+k}.$$

Now P^{δ} acting on C_i is aperiodic. For any $f \in L_{\infty}(\lambda)$, applying Theorem 3.1, we arrive at the conclusion that the sequence $\{P^{n\delta}f\}$ converges a.e. (λ) on C_i to the limit $c_i = \delta \int_{C_i} f d\mu$. Hence the sequence converges a.e. (λ) to $\sum_{i=0}^{\delta-1} c_i I_{C_i}$. Replacing f by $P^k f$ in the sequence, we conclude that the sequence $\{P^{n\delta+k}f\}$ converges a.e. (λ) to $\sum_{i=0}^{\delta-1} d_i 1_{C_i}$ where $d_i = \delta \int_{C_i} P^k f d\mu = c_{i+k}$. In a similar manner, 2 may be derived from Theorem 3.2 and 3 may be derived from Theorem 3.3.

THEOREM 3.6. Let P be a λ -continuous, conservative and ergodic Markov operator whose nontrivial invariant measure μ is finite (μ is normalized as usual). Let the period of P be δ and $C_0, C_1, \cdots, C_{\delta-1}$ be the totality of distinct, indecomposable P^{δ} -closed sets with $C_0 = A(C_1), \cdots, C_{\delta-2} = A(C_{\delta-1})$. For $j > \delta - 1$, let $C_j = C_{j-n\delta}$ where n is the largest non-negative integer such that $n\delta \leq j$. For every non-negative integer k, define function g_k on $X \times X$ by

$$g_k(x,y) = \delta \sum_{i=0}^{\delta-1} 1_{C_i \times C_{i+k}}(x,y) \frac{d\mu}{d\lambda}(y).$$

Then the sequence $\{p^{(n\delta+k)}(\cdot,\cdot)\}$ converges in $L_1(v \times \lambda)$ to g_k for every $v \in \mathcal{A}^+(\lambda)$. We also have

$$\lim_{n\to\infty}\inf p^{(n\delta+k)}(x,y)=g_k(x,y)\quad for\ (\lambda\times\lambda)\ almost\ all\ (x,y).$$

Proof. As in the proof of Theorem 3.4 we define $\bar{p}^{(n)}(x, y)$ by (3.12) and $\bar{p}(x, y) = \bar{p}^{(1)}(x, y)$. Then for (λ) almost all x, $\bar{p}^{(n)}(x, \cdot) \in L_1(\mu)$ with $L_1(\mu)$ norm equal to 1. Furthermore, since $C_i = A^k(C_{i+k})$ we have $P^k 1_{C_{i+k}} \ge 1_{C_i}$. Hence

(3.13)
$$\sum_{i=0}^{\delta-1} P^k 1_{C_{i+k}} \ge \sum_{i=0}^{\delta-1} 1_{C_i}.$$

However, equality holds in (3.13) since both sides of (3.13) are equal to 1. Hence $P^k 1_{C_{l+k}} = 1_{C_l}$, therefore, $P^k 1_{C_{l+k}} = 1_{C_l} P^k 1_{C_{l+k}}$ and $1_{C_l} P^k 1_{X-C_{l+k}} = 0$. Thus for every $f \in L_{\infty}(\lambda)$, $P^k I_{C_{l+k}} f = I_{C_l} P^k I_{C_{l+k}} f = I_{C_l} P^k f$. In terms of the density function $\bar{p}^{(k)}(x, y)$, we then have

$$1_{C_i}(x)\bar{p}^{(k)}(x,y) = 1_{C_i}(x)\bar{p}^{(k)}(x,y)1_{C_{i+1}}(y) = \bar{p}^{(k)}(x,y)1_{C_{i+1}}(y)$$

for $(\lambda \times \lambda)$ almost all (x, y). Hence for (λ) almost all $x \in C_i$ $\bar{p}^{(k)}(x, \cdot) = \bar{p}^{(k)}(x, \cdot) 1_{C_{i+k}}$. Now we consider the μ -reverse Q of P as in the proof of Theorem 3.4. Since a set is P^n -closed if and only if it is Q closed, Q also has δ as its period and $\{C_0, \dots, C_{\delta-1}\}$ is also the collection of all indecomposable Q^{δ} -closed sets.

Applying Theorem 3.5 to Q and $\bar{p}^{(k)}(x,\cdot)$ we have the sequence $\{Q^{n\delta}\bar{p}^{(k)}(x,\cdot)\}$ = $\{\bar{p}^{(n\delta+k)}(x,\cdot)\}$ converging in $L_1(\mu)$ to $\delta \cdot 1_{C_{i+k}}$ for (λ) almost all $x \in C_i$ and $\lim \inf_{n\to\infty} \bar{p}^{(n\delta+k)}(x,y) = \delta$ for $(\lambda \times \lambda)$ almost all $(x,y) \in C_i \times C_{i+k}$. Hence $\lim \inf_{n\to\infty} \bar{p}^{(n\delta+k)}(x,y) = \delta \sum_{i=0}^{\delta-1} 1_{C_i \times C_{i+k}}(x,y)$ and $\lim \inf_{n\to\infty} \bar{p}^{(n\delta+k)}(x,y) = g_k(x,y)$ follows immediately for $(\lambda \times \lambda)$ almost all (x,y). Moreover, if we define h_n by

$$h_n(x) = \int \left| \bar{p}^{(n\delta+k)}(x,y) - \sum_{i=0}^{\delta-1} \delta 1_{C_i \times C_{i+k}}(x,y) \right| \mu(dy),$$

then $h_n(x) \to 0$ for (λ) almost all x. We also have, for (λ) almost all x

$$h_n(x) \leq \int \bar{p}^{(n\delta+k)}(x,y)\mu(dy) + \int \delta \sum_{i=0}^{\delta-1} 1_{C_i \times C_{i+k}}(x,y)\mu(dy) \leq 2.$$

Hence for any $v \in \mathcal{A}^+(\lambda)$, $\int h_n(x)v(dx) \to 0$, i.e.,

(3.14)
$$\lim_{n\to\infty} \iint \left| \bar{p}^{(n\delta+k)}(x,y) - \sum_{i=0}^{\delta-1} \delta 1_{C_i \times C_{i+k}}(x,y) \right| \mu(dy) \nu(dx) = 0.$$

The $L_1(v \times \lambda)$ convergence of $\{p^{n\delta+k}(\cdot, \cdot)\}$ to g_k then follows from (3.14).

Now we turn to study the case that the invariant measure μ is *infinite*. We shall need the following

LEMMA 3.12. If a set E has the property that there exists an increasing sequence $\{n_k\}$ of positive integers for which the sequence of functions:

$$(3.14) P^{n_0}1_E, P^{n_1}1_E, P^{n_1+1}1_E, \cdots, P^{n_k}1_E, P^{n_k+1}1_E, \cdots, P^{n_k+k}1_E, \cdots$$

converges to 0 uniformly on E, then $\limsup_{n\to\infty} P^n 1_E = 0$ a.e. (λ).

Proof. Let ε be an arbitrary positive number. Then there is a positive integer k_1 such that $P^{n_{k_1}}1_E$ and all the terms in the sequence (3.14) which follow $P^{n_{k_1}}1_E$ are $<\varepsilon$ on E. Let k_2 be an integer such that $k_2 > n_{k_1}$. Then $n_{k_2} > n_{k_1}$, hence

$$P^{n_{k_2}}1_{\scriptscriptstyle E} < \varepsilon$$
, $P^{n_{k_2}+n_{k_1}} < \varepsilon$ on E .

Let $k_3 > n_{k_1} + n_{k_2}$, then $n_{k_3} > n_{k_1}$ and

$$P^{n_{k_3}}1_E < \varepsilon$$
, $P^{n_{k_3}+n_{k_1}}1_E < \varepsilon$, $P^{n_{k_3}+n_{k_2}+n_{k_1}}1_E < \varepsilon$ on E ,

..., etc. In this manner, we obtain a sequence $\{n_{k_i}\}$ of positive integers. We shall rename it $\{m_i\}$. This sequence has the property that, for every positive integer i,

(3.15)
$$P^{m_i}1_E < \varepsilon, \ P^{m_i+m_{i-1}}1_E < \varepsilon, \dots, \ P^{m_i+m_{i-1}+\dots+m_1}1_E < \varepsilon$$

on E.

Now suppose $\limsup_{n\to\infty} P^n 1_E$ is not equal to 0 a.e. (λ) . Then $\liminf_{n\to\infty} P^n 1_{E'}$ is not equal to 1 a.e. (λ) where E'=X-E. Since, by Lemma 3.2, $\liminf_{n\to\infty} P^n 1_{E'}$ is a constant function, $\liminf_{n\to\infty} P^n 1_{E'} = a$ a.e. (λ) for some a<1. Let b=1-a

and $\varepsilon < b/2$. Let i_0 be an integer such that $i_0(b-2\varepsilon) > 1$. By Lemma 3.8, there is a point x of X and a positive integer N such that

$$P^{N}1_{F_{i}}(x) < a + \varepsilon$$
, $P^{N+m_{1}}1_{F_{i}}(x) < a + \varepsilon$, ..., $P^{N+m_{1}+...+m_{i}}01_{F_{i}}(x) < a + \varepsilon$.

Then

$$(3.16) P^{N}1_{E}(x) > b - \varepsilon, P^{N+m_{1}}1_{E}(x) > b - \varepsilon, \dots, P^{N+m_{1}+\dots+m_{i_{0}}}1_{E}(x) < b - \varepsilon.$$

Now let

$$p_1(x, y) = \int_{E'} p^{(N)}(x, y_1) p^{(m_1)}(y_1, y) \lambda(dy_1);$$

$$p_2(x, y) = \int_{E'} \int_{E'} p^{(N)}(x, y_1) p^{(m_1)}(y_1, y_2) p^{(m_2)}(y_2, y) \lambda(dy_1) \lambda(dy_2),$$

$$p_{i_0}(x,y) = \int_{E'} \cdots \int_{E'} p^{(N)}(x,y_1) p^{(m_1)}(y_1,y_2) \cdots p^{(m_{i_0})}(y_{i_0},y) \lambda(dy_1) \lambda(dy_2) \cdots \lambda(dy_{i_0}),$$

and

$$K_0(x, E) = P^N 1_E(x),$$

 $K_1(x, E) = \int_E p_1(x, y) \lambda(dy) = P^N I_{E'} P^{m_i} 1_E(x),$

$$K_{i_0}(x,E) = \int_E p_{i_0}(x,y)\lambda(dy) = P^N I_{E'} P^{m_i} I_{E'} \cdots P^{m_{i_0-1}} I_{E'} P^{m_{i_0}} 1_E(x).$$

Then

(3.17)
$$K_0(x, E) + K_1(x, E) + \dots + K_{i_0}(x, E) \le 1.$$

(3.17) may be proved by an elementary method similar to the one used in the proof of Lemma 6.1 of [8], or by constructing the infinite product space Ω and the infinite product σ -algebra $\mathscr F$ as in the proof of Lemma 3.11 and then defining a probability measure η on $\mathscr F$ by

$$\eta[X_1 \in A_1, \dots, X_n \in A_n]$$

$$= \int_{A'} \dots \int_{A_n} p(x, x_1)(x_1, x_2) \dots p(x_{n-1}, x_n) \lambda(dx_1) \dots \lambda(dx_n).$$

Then the left-hand side of (3.17) is

$$\eta[X_n \in E \text{ for some } n \text{ equal to one of } N, N + m_1, \dots, N + m_1 + \dots + m_{i_0}].$$
Now, for $1 \le k \le i_0$

$$\begin{split} P^{N+m_1+\ldots+m_k} 1_E(x) \\ &= P^N I_E P^{m_1+\ldots+m_k} 1_E(x) + P^N I_{E'} P^{m_1} I_E P^{m_2+\ldots+m_k} 1_E(x) + \cdots \\ &+ P^N I_{E'} P^{m_1} I_{E'} \cdots P^{m_{k-2}} I_{E'} P^{m_{k-1}} I_E P^{m_k} 1_E(x) + K_k(x, E). \end{split}$$

Applying (3.15), we have

$$P^{N+m_1+\ldots+m_k}1_E(x) \leq \left[K_0(x,E)+\cdots+K_{k-1}(x,E)\right]\varepsilon + K_k(x,E)$$

$$\leq \varepsilon + K_k(x,E).$$

Hence $K_k(x, E) \ge b - 2\varepsilon$ by (3.16). Thus we obtain the inequality

$$K_1(x, E) + \cdots + K_{i_0}(x, E) \ge i_0(b - 2\varepsilon) > 1$$

which contradicts (3.17). Thus the conclusion of Lemma 3.12 is proved.

THEOREM 3.7. If P is a λ -continuous, conservative, ergodic and aperiodic Markov operator whose invariant measure μ is infinite, and if E is a set of finite μ measure, then, for every positive number ε , there is a set $E_{\varepsilon} \subset E$ such that $\mu(E_{\varepsilon}) < \varepsilon$ and $\lim_{n \to \infty} P^{n} 1_{E-E_{\varepsilon}} = 0$ a.e. (λ) .

Proof. Since E is a set of finite μ measure, $\liminf_{n\to\infty} P^n 1_E = 0$ a.e. (λ) by Lemma 3.2. By Lemma 3.8, for any positive number δ there is a set A with $\lambda(X-A) < \delta$ and an increasing sequence $\{n_i\}$ of positive integers such that the sequence of functions:

$$(3.18) P^{n_0}1_E, P^{n_1}1_E, P^{n_1+1}1_E, P^{n_2}1_E, P^{n_2+1}1_E, P^{n_2+2}1_E, P^{n_3}1_E, \cdots$$

converges to 0 uniformly on A. We choose δ to satisfy the condition that $\mu(E \cap B) < \varepsilon$ whenever $\lambda(B) < \delta$. This is possible because μI_E is absolutely continuous to λ . Take E_{ε} to be E-A, then the sequence (3.18) converges to 0 uniformly on $E-E_{\varepsilon}$. Since $1_{E-E} \leq 1_E$, the sequence of functions:

$$P^{n_0}1_{E-E_s}$$
, $P^{n_1}1_{E-E}$, $P^{n_1+1}1_{E-E}$, $P^{n_2}1_{E-E_s}$, ...

converges to 0 uniformly on $E - E_e$. Applying Lemma 3.12, we have $\lim_{n\to\infty} P^n 1_{E-E} = 0$ a.e. (λ) .

Theorem 3.8. If P is a λ -continuous, conservative, ergodic and aperiodic Markov operator whose invariant measure μ is infinite, then there is an increasing sequence $\{E_k\}$ of sets such that $\bigcup_{k=1}^{\infty} E_k = X$ and $\lim_{n\to\infty} P^n 1_{E_k} = 0$ a.e. (λ) for every k.

Proof. Since μ is σ -finite, there exists an increasing sequence $\{F_k\}$ of sets such that $\bigcup_{k=1}^{\infty} F_k = X$ and $\mu(F_k) < \infty$ for every k. By Theorem 3.7, for each k, there is a set $E_k \subset F_k$ such that $\mu(F_k - E_k) < 1/2^k$ and $\lim_{n \to \infty} P^n 1_{E_k} = 0$ a.e. (λ) . We nay assume the sequence $\{E_k\}$ to be monotonically increasing. Then

$$\mu\left(X\,-\,\bigcup_{k=1}^{\infty}E_{k}\right)=\mu\left(X\,-\,\bigcup_{k=N}^{\infty}E_{k}\right)\leqq\mu\left[\,\bigcup_{k=1}^{\infty}\left(F_{k}-E_{k}\right)\mathbf{1}\right]\leqq\frac{1}{2^{N-1}}.$$

Hence $\mu(X - \bigcup_{k=1}^{\infty} E_k) = 0$ and the theorem is proved.

THEOREM 3.9. Let P be a λ -continuous, conservative and ergodic Markov operator whose invariant measure μ is infinite, then there is an increasing sequence $\{E_{\nu}\}$ of sets such that

$$\bigcup_{k=1}^{\infty} E_k = X \text{ and } \lim_{n \to \infty} P^n 1_{E_k} = 0 \text{ a.e. } (\lambda) \text{ for } k = 1, 2, \cdots.$$

Proof. Since P has a finite period δ , the space X is partitioned into δ sets: $C_0, C_1, \dots, C_{\delta-1}$, of which each is a $\mathscr{C}^{(\delta)}$ atom. Then P^{δ} , acting on C_i alone, is aperiodic and has μI_{C_i} as its invariant measure. By Theorem 2.3, μI_{C_i} is also infinite. Applying Theorem 3.8, we obtain an increasing sequence $\{E_{i,k}, k=1, 2, \dots\}$ of sets such that $C_i = \bigcup_{k=1}^{\infty} E_{i,k}$ and $\lim_{n\to\infty} P^{n\delta} 1_{E_{i,k}} = 0$, a.e. (λ). Let $E_k = \bigcup_{i=0}^{\delta-1} E_{i,k}$. Then $\{E_k\}$ is an increasing sequence of sets such that $X = \bigcup_{k=1}^{\infty} E_k$ and $\lim_{n\to\infty} P^{n\delta} 1_{E_k} = 0$ a.e. (λ) for every k. Now

$$P^{n\delta+i}1_{E_k}(x) = \int P^{n\delta}1_{E_k}dv_x^{(i)},$$

hence $\lim_{n\to\infty} P^{n\delta+i} 1_{E_k} = 0$ a.e. (λ) for $i=0,1,\cdots,\delta-1$ and the conclusion of the theorem follows immediately.

REFERENCES

- 1. K. L. Chung, Markov chains with stationary transition probabilities, Springer, Berlin, 1960.
- 2. —, The general theory of Markov processes according to Doelin, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 230-254.
 - 3. J. L. Doob, Stochastic processes, Wiley, New York, 1953.
- 4. W. Doeblin, Élements d'une théorie générale des chaines simples :onstantes de Markoff, Ann. Sci. École Norm. Sup. (3) 57 (1940), 61-111.
- 5. Jacob Feldman, Subinvariant measures for Markoff operator, Duke Math. J. 29 (1962). 71-98.
- 6. P. R. Halmos, Lectures on ergodic theory, The Mathematical Sciety of Japan, Tokyo, 1956.
- 7. Eberhard Hopf, The general temporally discrete Markoff pricess, J. Rational Mech. Anal. 3 (1954), 13-45.
- 8. Shu-Teh C. Moy, λ-continuous Markov chains, Trans. Ame: Math. Soc. 117 (1965), 68-91.
 - 9. S. Orey, Recurrent Markov chains, Pacific J. Math. 9 (1'59), 805-827.

SYRACUSE UNIVERSITY,
SYRACUSE, NEW YORK